N-Linked Glycosylation Is Required for Transferrin-Induced Stabilization of Transferrin Receptor 2, but Not for Transferrin Binding or Trafficking to the Cell Surface
نویسندگان
چکیده
Transferrin receptor 2 (TfR2) is a member of the transferrin receptor-like family of proteins. Mutations in TfR2 can lead to a rare form of the iron overload disease, hereditary hemochromatosis. TfR2 is proposed to sense body iron levels and increase the level of expression of the iron regulatory hormone, hepcidin. Human TfR2 (hTfR2) contains four potential Asn-linked (N-linked) glycosylation sites on its ectodomain. The importance of glycosylation in TfR2 function has not been elucidated. In this study, by employing site-directed mutagenesis to remove glycosylation sites of hTfR2 individually or in combination, we found that hTfR2 was glycosylated at Asn 240, 339, and 754, while the consensus sequence for N-linked glycosylation at Asn 540 was not utilized. Cell surface protein biotinylation and biotin-labeled Tf indicated that in the absence of N-linked oligosaccharides, hTfR2 still moved to the plasma membrane and bound its ligand, holo-Tf. However, without N-linked glycosylation, hTfR2 did not form the intersubunit disulfide bonds as efficiently as the wild type (WT). Moreover, the unglycosylated form of hTfR2 could not be stabilized by holo-Tf. We further provide evidence that the unglycosylated hTfR2 behaved in manner different from that of the WT in response to holo-Tf treatment. Thus, the putative iron-sensing function of TfR2 could not be achieved in the absence of N-linked oligosaccharides. On the basis of our analyses, we conclude that unlike TfR1, N-linked glycosylation is dispensable for the cell surface expression and holo-Tf binding, but it is required for efficient intersubunit disulfide bond formation and holo-Tf-induced stabilization of TfR2.
منابع مشابه
Determination of the Binding Constant of Terbium-Transferrin
Apotransferrin (apo Tf) in 0.1 M N-(2hydroxyethyl)piperazine-N2-ethanesulfanic acid at 25 ˚C and pH 7.4 has been titrated with acidic solution of Tb3+. The binding of Tb3+ at the two specific metal-binding sites of transferrin was followed from the changes in the difference UV spectra at 245 nm. The molar absorptivity per binding site for Tb3+...
متن کاملIdentification of Amino Acids Involve in Indium Binding To Serum Human Apo-Transferrin
Indium is a heavy metal belonging to group IIIa. It is used as a radioimaging and chemotherapeutic agent in diagnosis and also in the treatment of cancers. It is believed that indium may interfere with iron metabolism and reduce cell growth in cancer tissue. The present report was established to study the binding of iron and indium to apo-transferrin (apo-tf) and to identify amino acids involv...
متن کاملStudy of Nonenzymatic Glycation of Transferrin and its Effect on Iron -Binding Antioxidant Capacity
Objective(s) Nonenzymatic glycosylation (glycation) occurs in many macromolecules in aging and diabetes due to exposure of biomolecules to high level of glucose. Glycation can changes function, activities and structure of many biomolecules. Considering this important role of transferrin (Trf) in iron transport and antioxidant activity in plasma this study was carried out to investigate the eff...
متن کاملTransferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characteriz...
متن کاملAcquisition of the functional properties of the transferrin receptor during its biosynthesis.
The properties of the newly synthesized and partially glycosylated forms of the transferrin receptor were examined to determine which co- and post-translational modifications are necessary for the acquisition of transferrin binding activity and transport of the receptor to the cell surface. The nascent transferrin receptor containing core-glycosylated asparagine-linked oligosaccharides does not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 52 شماره
صفحات -
تاریخ انتشار 2013